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The inertial damping and resonance of cellular convectioD 
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The phenomenon of steady cellular convection in a rotating fluid in which the stratifica- 
tion is statically unstable is well known. If the temperature field also varies in the 
horizontal direction a thermal wind is generated which can diminish the amplitude of 
the cells, or if inertial effects are strong enough, confine them to a narrow vertical band. 
On the other hand, in an enclosed container resonance can occur which increases 
the amplitude of the cells beyond the scope of a linear theory. 

1. Introduction 
In  his study of the stability of an infinite horizontally bounded rotating fluid heated 

from below, Chandrasekhar (1961, chap. 2) describes how, for sufficiently high Prandtl 
numbers, instability first sets in at  a critical value Rc of the Rayleigh number associated 
with a horizontal wavelength a, in the form of steady convection cells. His analysis for 
general values of an Ekman number 

where v is the kinematic viscosity of the fluid, IR the angular velocity of rotation and 
L a typical length scale of the system, shows that when there are two free boundaries 
Rc - E-) and a, N E* as E -+ 0. He also suggested that a similar law holds when one 
or both boundaries are fixed and this was confirmed in the case of two rigid boundaries 
by Homsy & Hudson (1971), who also determined the next two terms in the expansion 
of R, as E -+ 0. One advantage of studying this limiting situation is that the convection 
cells are so thin (of horizontal extent - Ef) that they may be regarded as a local 
phenomenon at a given horizontal location, and this allowed Daniels & Stewartson 
(1  977, hereafter referred to as I) to make an analytic study of their behaviour when the 
temperature field vanes in the horizontal direction on the length scale L, thusextending 
the earlier work of Daniels (1976), which established the initial onset of the cellular 
motion. In  both cases the model consisted of a rotating annulus insulated around its 
inner and outer curved walls and upper horizontal surface. The curved vertical walls 
were parallel to  the axis of rotation, which was anti-parallel to the direction of gravity g. 
Similar configurations are widely used in laboratory studies which hope to model 
features of the atmospheric circulation. In  many of these studies the motion has been 
generated by maintaining the inner and outer curved walls at different constant 
temperatures (see Hide & Mason 1975) but the aspect of differential heating at  the 
same horizontal level may be of interest in relation to the circulation of the oceans (see 
Defant 1961, p. 492) and of the atmosphere of Venus (see, for example, de Rivas 1973). 

In the steady axisymmetnc study in I convective effects are measured by the 
parameter 

E = v / U 2 ,  (1 .1)  

h = ~/3y*E-*, (1.2) 
t Present address : Department of Mathematics, The City University, London. 
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194 P. a. Daniels 

where u is the Prandtl number, y is the aspect ratio of the meridional cross-section of 
the annulus, which is assumed to have width L, and /3 is a thermal Rossby number 

p = agAT/R2L, (1.3) 

where a is the coefficient of thermal expansion and A T  the imposed temperature 
difference along the base. With E < 1, A N 1 corresponds to a Rayleigh number - E-*, 
and since the conductive interior temperature field in the annulus, being a solution of 
Laplace’s equation, is statically stable in the inner half but unstable in the outer half 
of the meridional cross-section, steady convection cells are superimposed on part of this 
field if h exceeds a certain critical value hi1). Although these cells are essentially the 
same as those described by Chandrasekhar (1961, chap. 2), in the differentially heated 
rotating annulus they are actually an integral part of the steady solution forced by the 
boundary conditions at the outer side wall. For h c hi1) the side-wall effect is confined 
to an E*-layer in which an exponentially decaying solution reduces the O(agATEtR-l) 
component of vertical velocity in the interior (which is generated through the thermal- 
wind relation and Ekman pumping) to zero at the wall. However, as described in 
Daniels (1976), once h > hi1) the first mode of the linear side-wall solution, expressed 
as an infinite series of vertical modes, no longer decays exponentially and is instead 
oscillatory, with the result that convection cells of horizontal wavelength O(E4) 
penetrate into the interior of the fluid. In  I their development is traced using a multiple- 
scales technique which exploits the fact that their amplitudes vary on the much 
larger scale of the annulus itself. In  this way it is possible to provide a complete 
analytic description of the cells for certain stratification profiles, including their 
eventual decay, which occurs in the neighbourhood of the vertical transition line at 
which a suitably defined local Rayleigh number has fallen to its critical value. 
A further increase in h results in the penetration of successive modes of the side-wall 
solution, which decay in the neighbourhood of their respective critical Rayleigh 
numbers. In  this way the basic temperature field acts as a filter of the complicated 
disturbances which spread from the outer wall, allowing the lowest mode to penetrate 
the furthest into the interior. No cells occur in the inner half of the annulus, where the 
stratification is stable, and the inner side-wall solution decays exponentially for all A. 

Resonance can also occur at a certain set of values of h at which the frequency of the 
forced convection cells coincides with one of the natural spatial frequencies of the 
annulus. With no forcing these values of h simply correspond to the existence of 
eigensolutions in the annulus, which with the finite side walls now occur at discrete 
intervals, in contrast to the corresponding continuous spectrum in the infinite problem 
considered by Chandrasekhar (1961). No doubt a nonlinear analysis will be required to 
resolve the question of how the flow develops beyond the first resonance as the 
instability takes over and inertial effects control the resonance, but this is beyond the 
scope of the present paper, in which we concentrate upon inertial aspects of the steady 
linear problem. Although the above argument would seem to invalidate such solutions 
once the first resonance has occurred, we shall show that inertial effects due to the 
thermal wind can not only damp the cells but completely remove the possibility of 
resonance for all values of h if an appropriately scaled thermal Rossby number is 
sufficiently large. 

The question of resonance is discussed in $6 .  A precise statement of the basic 
equations and underlying assumptions, with a brief summary of the results of I for the 
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case in whch p is vanishingly small, is made in $ 2. Using an approximation based on a 
stratification field which is independent of height, it  may be shown ( $ 3 )  that, for a 
given mode n and values of h in excess of an appropriate critical value hin), the structure 
of the cells is first affected by the vertically sheared zonal flow in the interior when 
p - Ef. For values of p @ Ef the amplitudes of the cells are so reduced that they are 
essentially confined to a narrow vertical band of width - d (< 1 )  at the outer wall; 
as the value of pE-8 increases there is a shift in emphasis as the cells decrease in 
amplitude in the interior of the annulus, the flow in the neighbourhood of their 
transition lines becomes insignificant and the solution can be determined uniquely 
from the three boundary conditions at the outer wall alone by a boundary-layer 
analysis ($ 4 ) .  For values of h within a critical distance O(E4) of A$) the solutions of 
$§ 3 and 4 are invalid and must be replaced by a new solution. Here inertial effects do 
not influence the leading-order flow until /3 N E4 and the details of the solution, 
described in 5 5 ,  are crucial to the determination of the first resonance of the system. 
Extensions of the theory, including the solution for more general stratification 
profiles, are discussed in $ 7 .  

2. Formulation and assumptions 
We shall assume the flow is steady and axisymmetric, that both centrifugal and 

curvature effects are negligible and that the fluid obeys the Oberbeck-Boussinesq 
approximation. Thus the equations of motion referred to axes rotating with the 
constant angular velocity R of the annulus are 

au/ax+aw/az = 0, ( 2 . l a )  

( 2 . l b )  - 2v + ,e(u a q a x  + w a q a z )  = - ap/ax + E V ~ U ,  

2u +p(u a q a x  + w aviaz) = E V ~ V ,  (2 .1c)  

( 2 . 1 4  p(u awlax + w aw/az) = - ap/az +- E V ~ W  + T ,  
A(U a q a x  + w aT/az) = ~ + E * V Z T .  ( 2 . l e )  

Here the origin of co-ordinates is taken a t  the mid-point of the lower surface of the 
cross-section of the annulus through its axis with the x axis radially outwards and the 
z axis vertically upwards. The flow then takes place in the region bounded by the planes 

x = & Q ,  z = O ,  z = D / L = y ,  (2 .2 )  

where I) is the height of the annulus. The velocity components u, v, w(r,z)  (in the 
radial, azimuthal and vertical directions respectively), pressurep(x, z )  and temperature 
T(x,  z )  are non-dimensional variables related to the actual physical (starred) quantities 
by the formulae 

x = X*/L, u = Qu*/ctgAT, T = (T*-T,*) /AT,  p =p*/ctpogLAT, (2 .3 )  

where p* represents the departure of the pressure from the hydrostatic pressure that 
prevails when the fluid is at rest at  a uniform temperature T,* and density p,. We define 
a stream function $ from (2.1 a )  by 

u = a$/az, w = -a$/ax, (2 .4 )  

and assume that $, and all the velocity components, vanish on the surfaces (2 .2) ,  
which are taken as rigid and impermeable. All the upper surfaces of the annulus will be 

7-2 
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assumed to be thermally insulating while along the base the motion is forced by a 
monotonic radial temperature gradient of the form 

T(s,O) = i s inns  ( - 4  < s < 3). (2.5) 

The problem is now completely defined in terms of the four parameters y ,  E, p and 
A, and we shall assume E to be small. In  (2.1 e) the Prandtl number u has been replaced 
by the parameter h defined in (1.2). This is convenient in the present study since we 
shall be concerned with aspects of the cellular regime which occurs when h - 1. 

If /3 is sufficiently small all the nonlinear inertial terms on the left-hand sides of 
(2.1 a-e) may be neglected, as in the basic set of equations of I. However, if A - 1 the 
second term of the left-hand side of the heat equation is significant in the Stewartson 
Et-layers located along the inner and outer walls of the annulus. These layers are 
required to reduce the interior vertical component of velocity to zero a t  the walls. The 
interior azimuthal velocity 

v = vo + AEQy-iv, + h2E#y-*v2 + . . . , vo = - cos nz[sinh n(y - z) - & sinh ny]/4 cosh ny, 

(2.6) 

automatically tends to zero since it is related to the conductive temperature field 

T = To + hE*y-fT, + h2E*y-fT2 + . . . , To = sin mz cosh n(y - z)/2 cosh my, (2.7) 

by the thermal-wind equation. Provided that h is less than a certain critical value the 
solution in the side-wall layers decays into the geostrophic interior and the flow is 
completed by Ekman layers of thickness N Et at z = 0, y ,  which complete the meri- 
dional circulation by providing the necessary radial transport of fluid. However if h is 
greater than this value the side-wall solution at  the outer wall becomes oscillatory, with 
the result that the interior stream function must be represented in the form 

$ = &Ettanhnycosnx+ ... 

(ao(z) + y-+EQa,(z)) dz + C.C. , (2.8) 1 1  )Ef C D,(x,Z,E)exp - 

where the first terms represent the basic solution corresponding to (2.6) and (2.7), 
valid when h is subcritical, and the final term (where C.C. denotes the complex conju- 
gate) represents an oscillatory solution with wavelength - E) and amplitude 

D,(z, 2, E) = DaO(z, 2) + y-*EQD,,(z, 2) + y-fE#Da2(z, 2) + . . . , (2.9) 

which varies on the order-one horizontal scale of the annulus. The real eigenvalues a, 
must be determined from the ordinary differential equation and boundary conditions 
for DUO, which are 

( 2  ) (2.10) 

a2o,o 
a22 

4--a: h-+at D,, = 0, D,,(s,O) = DU0(z, 1 )  = 0 (0 < 2 < l ) ,  

where z = yZ and aT,/az is the conductive stratification, given by the solution (2.7). 
Real values of a,, corresponding to the existence of the oscillatory solutions, depend 
upon the fact that aT,/az is negative and that h is positive. For a temperature field of 
the form (2.7) this restricts the cells to the outer half of the annulus and for a given h 
(sufficiently high) there exists a series of transition lines x = xn (n = 1,2,  . . . ; xi < 
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a t  which the nth pair of eigenvalues of the system (2.10) converge to a single value, no 
longer existing for x < 2,. Alternatively, if we consider the situation a t  a given location 
x (for instance at  the outer side wall itself) there is a series of critical values hin) of A 
at which the nth pair of eigenvalues is generated, and there are no cells at all if A < Ail).  

Complete analytic solutions are clearly dependent upon the nature of the stratifica- 
tion profile, which appears in (2.10) and which is strictly given by the formula (2.7). 
However general properties of the cells may be obtained analytically by making the 
approximation that the stratification is independent of height : 

aT,/az = -C,(X) (i = 0,1, ...). (2.11) 

Using the first of these equations (i = 0) it  may be shown that A?) and x, (if it  exists) 
are given by the formulae 

hin) = 4*3(n77)+/C0(4), ACo(xn) = 44 3(n7r)4. (2.12) 

The higher-order terms (E#,E*, ...) in (2.8), (2.9) and (2.11) are generated by the 
corresponding terms in the basic solutions (2.6) and (2.7) and also by the influence of 
the Ekman layers, which, when matched with the leading terms in the oscillatory part 
of the interior solution (2.8), force the second-order functions D,, and a,. Although 
these terms may be calculated in a straightforward manner, as in the analysis of I, 
and result, for instance, in order-Ei displacements of the transition lines and order-E) 
corrections to the critical values of A, in the following sections we shall exclude such 
effects, which tend to mask the crucial features of the analysis. This may be done in a 
consistent manner if we assume that the shear stress rather than the velocity is 
specified at  z = 0, y and also that the functions C,, C,, . . . are subsumed in the leading- 
order stratification field C,. 

The two functions D,, corresponding to a given pair of eigenvalues a, satisfying 
the system (2.10) contain arbitrary multiplicative functions A,(x) which are found 
from consideration of the order-E* term in the expansion (2.9). In  the immediate 
neighbourhood of the side wall the stream function (2.8) involves an additional solution 
corresponding to the eigensolution of (2.10) with negative imaginary part which 
decays within a distance N E* of the wall. The complete solution for 4 of given mode n 
then contains five unknown constants, three of which are determined from the require- 
ments of zero velocity and insulation at x = 4 and the remaining two from the require- 
ment that the cells should decay beyond the transition line at  5,. The precise manner 
in which this is achieved is described in I although we note that the essential feature 
is that the solution (2.8) becomes invalid within a distance O(EgySA-*C,(x,)S C;(z,)--*) 
of 2,. Here the solution must be reformulated, is O(E-A) larger than the solution (2.8) 
and can be written in terms of Airy functions. 

3. The critical regime /3 N 

If the value of A is less than that required to generate the cells in the interior of the 
fluid, the nonlinear inertial terms in the equations of motion (2.1) may be neglected 
throughout the annulus if/3 Q 1.  However, once the cells appear they introduce radial 
and vertical velocity components - E8 and N Et (respectively) into the  interior of 
the fluid, so that the sizes of the inertial term due to the rotation and the dominant 

for h > hin) 
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nonlinear inertial term, which occurs in the azimuthal component of the momentum 
equation, are 

where v, is the basic interior zonal velocity given by (2.6). Thus the cell structure will 
be significantly modified when the scaled thermal Rossby number Po = By*E-* N 1. 
The leading-order equation (2.10) for D,, then contains an additional term, the effect 
of which may be estimated by solving the equation for Po < 1. The eigenvalue equation 
for a, becomes 

u EB, BW av/az BE4 av,/az BE*, (3.1) 

aos-hC,a:-)iy~B,CAa0+4nzn2= o ( n =  1,2,  . . . ; P o <  I) ,  ( 3 4  

where terms 0(/3:) are neglected and use of the approximate formulation (2.11) and the 
thermal-wind relation has led to the replacement of the zonal-velocity formula (2.6) by 

(3.3) 

C,(*) = c ( >  O ) ,  CA(*) = 0, Cb(*) = - c  ( <  O ) ,  C,(O) = 0, (3.4) 

and C = 8 and c = 4n2 for the particular profile (2.5). 
The effect of the additional term in (3.2) is to prevent the set of roots which lie at 

opposite points in the third and fourth quadrants of the complex a, plane when 
hC, = 0 from ever reaching the real axis for any finite value of hC,, in contrast to the 
situation giving rise to (2.12). Thus provided that ,8,C,!, + 0 there are three roots for a, 
with Ima, < 0 for each value of n (the third set of roots lies along the negative 
imaginary axis) and if PoCi( it) > 0 it would be possible to obtain a consistent solution in 
and E*-layer on the outer side wall which decays into the geostrophic interior and 
satisfies the three conditions a t  the wall. However the wall is insulated and so CA(4) = 0, 
but since the three decaying solutions appear as soon as PoCi is non-zero, this result 
indicates that the transition of the solution must occur near x = Q when Po N 1, 
suggesting that the problem may then be solvable by a boundary-layer approach. This 
will be confirmed in Q 4, but it is clear that the transition of the cellular regime must 
occur at  lower values of 8. The reason for this is that the leading-order solution for 
D,, depends upon the details of higher-order terms in the multiple-scales solution of 
comparative order E*, since i t  is the compatability of the solution at this stage which 
determines the amplitude functions A,. Thus inertial modifications to the cell ampli- 
tudes due to the interior zonal flow occur when 

P1 = /3y*E-% N 1, 

and following I we use the assumptions (3.3) to obtain 

where 

D,, = A,(x) sin nn2, 

A,(z) = K,CY,,F"~'\JC~$- &hC,J-i, 

(3.5) 

which provides the amplitudes of the two sets of cells of given mode n associated with 
the two real positive solutions a, = ~ l , ~ , ~ ( x )  (where a& Q QhC, < at2) of the eigenvalue 

(3.8) 
equation 

With the corresponding constants K ,  = Knl,  K,, related by consideration of the flow 
near the transition line centred on x, [given by (2.12)] and use of the boundary condi- 

a: - hC,(x) a; + 4n2n2 = 0. 
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tions at the wall ( x  = 3) and the additional assumptions stated in Q 2, the results of I 
are modified to give a, = D,, = 0 with K,,, , = 0 if n is an even integer and otherwise 

where 

and 

a,, 2 = a01,2(#)r a1,2 = la:,, - !w(* 
a,,, ,dx, b, = y-g 2* (y) hC 4 cos 4 (# cos-l[ y] C ( x  ) 3 )I (3.10) 

cos b, + {a,(.: - b$)/a,(af - bg)) sin b, 
sinb, - {ul(at - b$)/u2(af - b:)} cos b, 

6, = tan-' (3.11) 

The physical significance of the regime (3.5) is evident when we note that A - 1, P1 - 1 
corresponds to a fluid with Prandtl number - 1. 

4. The regime P 9 E )  for h > hi") 
For large values of P1 we have a, & a,, so that Kal, ,oc and from (3.7) 

A,, cc (allaol(x))B1'2A, A,, = (~llaoz(x))~1'2A ( P l P  9 1). (4.1) 

Since C, is monotonic it follows from (3.8) that ul = a,,(*) < aol(x) 6 aO2(x) for a11 
x, < x 6 4, so that the amplitudes of both sets of cells are diminished from their 
corresponding values when P1 = 0. If we fix h and let P,/h 3 co (equivalent to [I + 0) ,  
A,, vanishes everywhere and A,, vanishes except near x = 4 - , where we have 

Here the second exponent follows from the form of the Taylor expansion for aol(x) at 
x = 4, which is obtained from (3.8). It is interesting to note that this limiting form may 
be confirmed by a boundary-layer analysis at the wall, demonstrating the shift in 
emphasis from the transition lines when P 9 E f .  We assume that Pl 9 1 and define a 
scaled horizontal co-ordinate by the relation 

PIE = x-4, (4.3) 

where the constant r remains unspecified a t  present. The solution for 9 in the neigh- 
bourhood of the wall (but outside the Eg-layer) is written as 

9 = Ef[cyl(B~'x)+y*[ C D,(f;,2,E,~,)exp(iy-~E-~(x-~)a0)+c.c.] +... (E +O), 
(4.4) 

U # > O  I 
where the oscillations on the Eg scale are represented by the parameter a,, now inde- 
pendent of x. The function D, remains to be determined and is expanded as E + 0 in 
the form 

where s and t are unspecified constants. 

(4.5) D, = Dao(E, 2) +/%EtDal(E, 2) + .*.> 
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Substitution of (4.4) into the equations of motion and equating terms of order unity 
now gives D,, = A , ( f )  sin nnZ, 

and the possiblevalues of a, are the solutions of (3.8) withC,(x) replaced by C, forwhich 
the series of critical values hin) of h at which the nth set of roots first reaches the real 
axis is given by (2.12). The amplitude functions A,(C) are determined by consideration 
of the equation for D,,. With h hp) for the given value of n the appropriate balance 
with the first-order derivatives arising from D,, is obtained by taking 

(4.7) = -1 2 ,  8 = *, t = Q, 

and a consistent solution for D,, satisfying the null boundary conditions at 2 = 0 , l  
can be found only if 

(4.8) 

where K ,  is an arbitrary complex constant to be determined (in (4.9) below) from the 
boundary conditions a t  the wall 6 = 0. 

This result completes the description of the side-wall shear layer when ,8, 9 1 for all 
values of h 3: hin). When A .c hi1) there are three roots for a, with Ima, < 0 for all 
n ( =  1,2, ...), the solution satisfying the three boundary conditions at the wall decays 
within a distance N ES and the vaIue of ,8 is not large enough to influence the flow. If 
hiN+,) > h > hiN) for some integer N then for n 2 N + 1 the same argument holds, 
while for n = 1, . . ., N we have solutions of the form (4.8) and of the two available real 
positive values of a, we must choose the one which has Re (hC - 3 4 )  > 0 in order to 
obtain a solution which decays within a distance O(h*/3;4) of the wall. To leading order 
the three boundary conditions at the wall are satisfied if the nth mode qn) of the 
stream function (n < N )  is given by 

A&) = K ,  exp { - ct2/8(hC - 3at)), 

where a, is the appropriate positive root of (3.8) with at < $hC (i.e. a, = a,). This 
result confirms (4.2) but is independent of the solution in the neighbourhood of the 
transition lines, the boundary-layer method essentially making the simplifying 
assumption that zero is a consistent solution in those regions. We also note that the 
solution which decays within a distance - E# from the side wall makes no contribu- 
tion to (4.9) to leading order. For values of h such that h N hin) the above solutions (4.9) 
and (3.7) are clearly invalid and a new expansion procedure must be adopted: this is 
the subject of the next section. 

5. The critical regime /3 N E4 for h 2: hin) 
Since CA($) = 0 it follows from (2.12) that when 

h = hp++S ( 8 <  1) (5.1) 

we have 4 - 2, N (2C/Ac)4 64, CA(xn) N (2Cc/h)4 84, (5.2) 

and thus the transitional region of $3, centred on xn and of horizontal extent 

N EfC*Ch(x,)-S N Ef&*, 
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can no longer be treated independently of the side wall when 6 - E*. For values of A so 
close to hin) the cell of mode n is only just generated a t  the side wall and the solution 
of Q 3 must be reformulated. We therefore define order-one parameters p and 8 and an 
order-one horizontal length scale 8 by 

/3 = E*ySp, A = hLn) + y*E*8, Eiyi8 = X, - X, (5.3) 

where it is anticipated that inertial effects due to the thermal wind will modify the 
leading-order solution with 8 - 1 when - 1. 

The transitional solution for the mode n is written in the form 

qn) = {y*Ei sin ( n d )  AJ8)  exp [iZ,(x - z,)/y*E*] + c.c.} + . . . ( E  + 0 ) ,  (5 .4 )  

where E0 = a,(x,) = (2n2n2)*. Substitution into the full equations of motion shows that 
the complex function A ,  is given by A J 8 )  = A ( @ ,  where 

A"-  ( @ P + U ) A  = 0 (5 .5)  

(5.6) 

(5.7) 

I and 8 = k,8+ k ,  k284 - ik ,B 

u = -ak!kk2,8+)kip,  
( - 8*k2 < 8 < a), 

with k,  = (E;c/2C)f,  k2 = 2fC/3*c*d$, k3 = C t c f / 2 f 6 @ .  

The required solution of (5 .5)  which decays as Re0 -f GO is 

A = KU(a,8), (5 .8)  

where U(a ,  0) is the parabolic cylinder function (defined, for example, by Abramowitz I% 
Stegun 1964, p. 685) and K is an arbitrary complex constant. In  general then, the full 
solution for the nth mode of the stream function near the outer side wall when p, 8 N 1 
which satisfies the no-slip and insulating conditions at  the wall may be written in the 
form 

EQy% c sin nnZ ( c o ~ ~ ~ ( ~ - ~ ) [ R I m  U(a,O)-IRe U(a,8)]  It.'"' = 47rnZo(R2 + 12) y*E* 

[RRe U(a,  8) + I  Im U(a,  e)] + O(E) ( E  + 0 ) ,  (5.9) 
di (z-4) + sin 0 

where R, I = Re, Im{U(a, - ik3p)} ,  although this solution may become invalid a t  
certain discrete values of A (see Q 6 below). The solution which decays exponentially 
within a distance N E* from the side wall makes no contribution to leading order as 
E -+ 0 and thus the behaviour of the cells near h = AT.,, is solely dependent upon the 
properties of the function U(a, 0). 

First,whenp = 0 and 8 - 1 we have a = - )kq k,2 8, I = 0,  R = U(a,  0) and 0 is purely 
real. As 8 -+ GO, 

(5.10) 

where t = ( + l ) + T ,  e = q a p g ,  = ~(ge,)+ (62 11, (5.11) 

(5.12) 

1 y*E* 

t ~ ( a ,  0)  N 2-t- ta  r(a - +a) (-)'A' ( t ) ,  

008-1 g - t6( 1 - p)* 
and 8, = (4 #c(c2- l)t-acosh-'g (6 2 I). 
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This represents an Airy function Ai centred on 5 = 1 (i.e. 8 = k,k,&, i.e. x = x,) and 
decays within a distance N la/-* (i.e. 8 N 8-4, i.e. x -x, N EZS-*) on either side of this 
line. Thus as 8 --f 00 the transitional region spreads from the wall, developing a region 
of dominant amplitude near x, with oscillatory behaviour in the region x > x,, the 
solutions in these regions matching precisely with those of 3 as S -+ 0. 

Inertial effects upon the solution may be judged from an asymptotic expansion of 
U near the wall as s" -+ co for general values of ,8 - 1. In  this case, if we write 

8 = - igkg + 8, (5.13) 

so that 8 is real and varies from zero at the wall to infinity as Re 8 -+ 00, then 

U(a, 6)cc e ~ p ( ~ i k , k , s " ~ B - ~ k ~ 8 ~ / 4 k , k , s " ~ ~  (s"+ m), (5.14) 

where terms of exponentially small order are neglected and in addition to 8 9 1,  it is 
assumed that g2, p8 < 8. The solution therefore represents a boundary layer near the  
wall where 8 N p-484 in which the solution oscillates rapidly with wavelength N 8-4, 
provided that 

8-4 < g < 8% (5.15) 

The upper limit expresses the fact that the wavelength of the oscillation is small on the 
boundary-layer length scale whilst the lower limit ensures that the boundary layer 
does not extend as far as the transition line situated a t  8 = k,  k, 83. Here the detailed 
structure of the flow may be determined but from (5.14) it  follows that for 8 9  1 it is 
exponentially small and thus insignificant in comparison with that near the wall even 
for small values of the inertial parameter p. If p - 8-4 the boundary-layer solution 
fails although the oscillations of wavelength N 8-4 remain and the solution is a pertur- 
bation of the p = 0 solution when /? < 8-4. 

For large values of ,8 and general values of s" N 1 the solution may be expressed in 
terms of the Hankel function HP),  and provided that /? B s"4,l 

where 8 is defined by (5.13). This represents a solution which decays within a bound- 
ary layer of thickness 3 N p-* (< 1 )  when s" ,., p* (the effect of s" being negligible to 
leading order if 8 < p*) whilst if 8 B it is easily verified that we recover the 
boundary-layer behaviour (5.14) with the region of decay extending from - /?-* to a 
distance - p-4s"i from the wall. 

9 8-4 the solution develops a boundary- 
layer structure [of the form (5.14)] near the wall, as s" + m, in line with the limiting 
behaviour predicted for a, 9 a, (which is equivalent to 9 ( A  - hin))-+ - 8-4, i.e. 
E*p 9 E*8-4) at the beginning of 4. Of course the boundary layer does not always 
develop because we cannot take s" arbitrarily large; the solution must become invalid 
before s" N E-* (i.e. 6 N 1) .  Essentially the formation of the boundary layer is a function 
of both p and h-hi,), expressible as a single parameter ps"4 when h-hin) < 1. In  
general the limit 8 + co with ps"4 - 1 produces the full cellular structure of 3, valid 
for all p N E* when h - hin) N 1, but if s" -+ co with ps"4 + m this becomes the boundary- 
layer solution of § 4, which is then valid for B B E f  when h - hin) ,., 1, while if s" + 00 

with is"& + 0 it is simply a perturbation of the limiting solution when B = 0. 

From the above analysis we see that if 
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6. Resonance 
In  Chandrasekhar’s (1961, chap. 2) study of the stability of an infinite rapidly 

rotating thermal layer heated from below, bifurcations of the basic state always 
appear in the form of steady convection cells as the Rayleigh number increases pro- 
vided that the Prandtl number exceeds the critical value of 0.676 ... . In  a fhite 
geometry we must also expect bifurcations to occur although they may be inhibited by 
the container walls, leading to an increased critical Rayleigh number, and also occur 
in a linear form only a t  discrete intervals: essentially when the cells are of just the right 
dimensions to fit into the container and satisfy the null conditions at  the walls. These 
aspects have been considered numerically in the rotating case by Homsy & Hudson 
(1971) and analytically in the non-rotating case by Drazin (1975) and Segel(l969). 
If the cells are actually forced by non-zero boundary conditions at  the walls, as in the 
problem considered here, then resonance is liable to occur when their frequency coin- 
cides with one of the natural spatial frequencies of the container. In  this section we 
investigate the effect of the thermal wind on the occurrence of resonance by deter- 
mining the location of the resonant states for values of in the range zero to infinity 
under the approximate formulation of §$2-5. 

First, if A - Ap) = Gwith 6 N 1 andp, N 1 and n is an odd integer, the resonant states 
are det,ermined by the solutions of the equation 

a b b - 5 s i n  (b ,  + 6,) -t Aces (b2 + 6,) -2 cos (b,  + 6,) - 2 sin (b ,  + 6,) = 0, (6.1) 
a, a2 a, a2 

since then K,,, as given by (3.9), becomes infinite. Physically, this means that the 
vertical component of velocity in the convection cells increases from the value of 
order E4 imposed by the side-wall boundary condition to a significantly larger value 
measured by an appropriate power of E in the neighbourhood of any value of h at 
which (6.1) is satisfied. The precise amount by which the amplitude rises will ultimately 
depend either upon nonlinear effects, or upon the higher-order terms in the expansion 
(2.8) in powers of E (Dao being the leading term). The latter effect is possible because 
once the leading-order term is sufficiently large, the amplitude of the second-order 
term will become comparable with the magnitude of the side-wall boundary condition 
( - Et )  and thus will play a significant role. If n is an even integer the condition (6.1) 
corresponds to the existence of an eigensolution in which the value of K,, is arbitrary. 

Analytic solutions of (6.1) are possible in several limiting cases. If h n4, so that 

and, from (3.11), 

condition (6.1 ) reduces to 
cos (b,  + 8,) = O(n2/ht), 

b a 
~ C O S  (b, + 6,) - 2 sin (b, + 13,) -‘sin (b,  + 8,) = 0 
a2 a2 a, 

and resonance depends upon the relative magnitudes of the terms a2/a2, b,/a2, aJa, 
and b,/a,. If IT > 4 the significant terms are the first two and the criterion for 
resonance reduces to b , - b , =  m n - ) ~  
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for any integer m. If u = & the third term is also significant, leading to the slightly 
modified condition b, - b, = mn - &r, 

while if u < 4 the third term is dominant and thus resonance is impossible. Since 
b, a b, and x, N 0 the above conditions become 

to leading order and for given y, C, and E these are satisfied at  an infinite number of 
values of h with m - E-3. In  both cases successive states for a given n are separat,ed by 
a difference 

4nh$y*E*/I0* Ci dx (6.8) 

in the value of A, only slight changes being necessary to 'fit ' additional cells into the 
annulus. Of course the corresponding change in the conventional Rayleigh number R 
between successive resonance states is large, being of order E-l as E + 0. 

Solutions of (6 .1)  may be found for general values of h in the limit as u +- 0 (,8, -+ 03). 
Suppose that a, - a, - A, so that (u,/a,)1'2u 9 1 if u < A. Therefore a, B a, if u < A and 
then(3.11)reducestocos(b1+6,) = Oandthecriterionforresonancetosin(b, +a,) = 0. 
Thus resonance is impossible if u < a, - a,. For values of 6 N 1 we have a2 - a, - 1 and 
so resonance is impossible if u < 1 .  This is consistent with the lower limit of a = Q when 
A 9 nt and is confirmed explicitly by the boundary-layer solution (4.9), while as 
6 + 0 these results hold if u < 64. 

The occurrence of resonance at very small values of 6 (including the first resonance 
as h increases beyond hin)) depends upon the properties of the parabolic cylinder 
function U(a, 6), this solution replacing the solution (2.8), which gives rise to the 
condition (6.1) when s" = E-)y-h3 - 1 .  In  general we see from (5.9) that resonance 
occurs when U(a ,  - i k 3 p )  = 0, so that if/? = Oit takes place when U(a ,  0) = 0; i.e. when 

(6.9) s" = 6(4m + 3) c&Zt/2)C% (m = 0, 1 , 2 ,  . . .), 
the first resonance occurring a t  a value of h which is 18ybhZt E*/2%'9 in excess of hia), 
On the other hand, if 1 is small (but non-zero) resonance will occur only if 

U(a ,  0) - iJC3/?U'(a, 0) = 0 (6.10) 

when p 9 E* and since a = - @:ki s"+ O(p) this can never be achieved, although 
clearly the amplitude will rise to a value - P-l(> 1)  when s" takes any one of the values 
given by (6.9). 

If p - E* the second term in the expansion (6.10) is of the same order as the second- 
order terms in the expansion of the solution (5.9) in powers of E ,  which must 
therefore be taken into account. The above argument shows that in general we may 
expect the amplitude of the vertical velocity in the cells to increase from order E4 to 
order E* near the resonance positions (6 .9) ,  although as mentioned above, a full 
investigation of the second-order terms is required to provide a detailed description 
of the behaviour of the solution near these positions. It is hoped to report on this 
aspect of the problem in a future paper. We note, however, that resonance does not 
occur as s" -+ 03 even for small values of if 184 > 1 ,  the expansion (6.10) being 
invalid owing to the rapid oscillation of the boundary-layer solution (5 .14 ) .  
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-+ co. From (5.16) we see that resonance then 
depends upon the zeros of the Hankel function Hr)(e-hind), where d = s”ilki@/3k3P2#. 

However H ‘ _ ~ ( e - + i n d ) c c ~ ~ ( a ) + i ( 3 ~ ~ ~ ( d ) +  27rI*(d)>, (6.11) 

where K+ and 4 are the modified Bessel functions, and since KA(d) has no zeros for 
larg d I < in there is no resonance for any d 3 0. Thus resonance does not occur for 
any d such that 0 < s” < 00, while for larger values of A the boundary-layer solution 
(4.9) confirms that resonance is completely eliminated for all values of h when ,8 9 1.  

Finally we consider the limit 

7. Discussion 
We have studied the modifications to patterns of steady cellular convection which 

occur as the effect of an interior thermal wind becomes significant. First, if h < hi1) 
there are no cells and the flow is modified by nonlinear inertial effects if a thermal 
Rossby number /3 N 1. However if h > Ail )  the structure of the cells that are present 

(7.1) 
is changed if 

The change takes the form of a damping of the amplitudes of the cells, which still 
retain their original transition lines throughout the outer half of the annulus. In  the 
limit /?,/A -+ co (i.e. u -+ 0) the cells are damped out almost completely and only one of 
each set corresponding to a given vertical mode n remains of any significance and this 
only in the immediate neighbourhood of the outer wall, where the maximum negative 
temperature gradient occurs. The transition lines become insignificant in comparison 
with the flow near the wall, the boundary-layer analysis of $4 showing that when 
/3Jh > 1 the five arbitrary constants which appear (for given n )  in the solution when 
Bl N 1 (two of which are determined from consideration of the flow near transition) 
are reduced in number to three and are completely determined from the conditions a t  
the wall. However the damping of the cells is effected by a smooth transition in which, 
provided that A//?, = u < 1, their extent is limited to a maximum distance of order 

/3Jh = /3y%h-’E-H = u-1 N 1. 

(hl/3)+ = ( 7 4  

from the outer side wall. These steady cells are therefore likely to be of Ieast 
significance in fluids with low Prandtl numbers. 

In  an infinite layer convection cells which oscillate in time can occur at values of 
h less than hi1) if the Prandtl number is less than 0.676 ... (Chandrasekhar 1961, 
chap. 2 ) ,  overstability being preferred to the exchange of stabilities in this situation. 
In  the present paper we have discussed only steady linear solutions of the system and 
an investigation of the influence of the side wall and the horizontal temperature 
gradient on the stability characteristics of the flow is required to determine whether, 
for sufficiently small Prandtl numbers, either nonlinear or time-dependent oscillatory 
motions are as important as the steady component of the flow described here. One 
possibility is that oscillatory disturbances will be convected away from the side wall 
with the characteristic group velocity of the system, and subsequently damped out 
in the stably stratified interior region. 

As the value of A passes through hin) and a cell of mode n is generated, the horizontal 
variation of its amplitude is expressed as a parabolic cylinder function, inertial effects 
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being significant if /3 2 E4 and the solution eventually developing into either the 
cellular regime of 3 3 if $ - E* or the boundary-layer regime of 5 4 if $ % Ej, 
the latter being formed when ( A  -hin)) E-f 9 1 if BE-f 9 [(A-Ain)) E-41-4. Prom 
(5.15) the boundary-layer solution remains consistent when A-@) - 1 only if 
E4 -g ,8E-4 < E-4, the lower limit ensuring that the layer is thin and the upper limit, 

that the horizontal scale of decay is larger than the oscillatory wavelength. This upper 
limit is confirmed by the expansion (4.5) for D, [with the values of s and t given by 
(4.7)], which breaks down when $, - E-*. The horizontal scale of decay (7.2) is then 
of the same order of magnitude as the E* side-wall layer, and the thermal Rossby 
number p - 1. In  this situation inertial modifications to the entire conductive solution 
must be taken into account and the problem in the interior is nonlinear. 

Taking the limit of the present solution as pl -+ 00 indicates that if /3 is small (but 
order one) a consistent solution will exist in boundary layers along the inner and outer 
walls of the annulus which will provide the necessary local adjustment of the flow to 
the conditions a t  the wall and also decay into the geostrophic interior within a distance 
O(E+). On the other hand once /3 is sufficiently large the shearing in the core can lead to  
instability even in regions of positive temperature gradient, depending upon the 
attainment of a critical Richardson-like number in the fluid and the difference of the 
Prandtl number from unity. The critical wavelength a t  instability was determined 
by Walton (1975) in the case of a vertically bounded system of small aspect ratio 
(equivalent to the assumption that ,9 > 1 in the present study), thus extending the 
original inviscid result of Stone (1966). McIntyre (1970) has also considered the problem 
in an unbounded viscous fluid, equivalent to finite values of ,9 and E in the present 
study. His analysis predicts an infinite critical wavelength on the viscous length scale - E3 (showing that for E - 1 the marginal instability modes in any container will 
depend on the container geometry in an essential way), and although his general 
results are confirmed by the experiments of Baker (1971) and by Walton’s analysis 
in the limit /3 + 00, E + 0, the effect that is of interest in the present context, namely 
that of lateral bounding walls, remains to be determined. 

Although the present study has relied heavily on a simplification of the interior 
temperature field, the results may be extended to general stratification fields [e.g. 
(2.7)] in a straightforward manner. If T,(x, z )  = - yP(x, Z), $, - 1 and A 9 n* 9 1 an 
analytic solution may be found using the WKB method (see I) in the form 

p< 1, (7.3) 

where the two sets of vertical transition points 2, = Zol, Z,, (above which the solution 
is exponentially small), eigenvalues 0, = h-h, = Q,, Q2 and amplitude functions 
A ,  = Am, A,, are now given by 
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where (7 .7)  

As pl h-l+ co the amplitude of the second set (7 .6 )  becomes exponentially small, as 
does that of the first set, except in the immediate neighbourhood of the outer wall. It 
may be confirmed by a boundary-layer analysis (equivalent to that of $4)  that the cells 
are confined to a boundary-layer region - c  = h-ibt(S-x) N 1, where the solution 
corresponding to (7 .6)  must be discarded (since Pzzz(+,Z) > 0) and 

where Q, is given by (7.5) evaluated a t  x = +, 

and Knl is a constant which depends upon the boundary conditions at  the wall. The 
assumption that h & n4 excludes the possibility that a cell of mode n is about to 
develop a t  the side wall and so there is no counterpart of the solution (5.8) in this 
analysis. 

In  fact the variation with E of the solution in the boundary layer is always of the 
form given by (7 .9 )  for any appropriate value of h ( > AiR)) and any given value of n. 
However the integrands in the formulae (7 .9)  for E andg must be replaced by 

~ z z z ( & ,  2) B:, (.Vz(i&, 2) - 6a4h-1)B% (7.10)  

where a and B, are the real eigenvalues and solutions of the system (2.10), in which we 
write a for a0, B, for D,, and - yP(+, 2) for To, respectively. Similar remarks apply to 
the solution of mode n for values of h in the immediate neighbourhood of hin), the 
2 variation of the parabolic cylinder function U also being appropriate in the case of 
a general stratification field. 

These extensions of the theory suggest that the phenomenon of resonance described 
for constant vertical stratification fields in $ 6  is a real one. When the effect of the 
thermal wind is negligible (p < E j )  the first resonance occurs (as h increases) at a value 
of A of order E* in excess of hi'), the value at which the first forced convection cells 
are generated. Although further resonances then follow in rapid succession at  regular 
intervals O(E*) as h increases, a nonlinear analysis will be required to determine 
precisely how the amplitude of the cells evolves in the neighbourhood of the first 
resonance as the instability takes over. Thermal-wind effects, however, not only damp 
the cells when they appear but also reduce the possibility of resonance, for it is shown 
in 3 6 that this becomes impossible for large values of h if u < 4 and if h -A$%) N 1 is 
impossible (for the given mode n )  if (T < 1. The properties of the parabolic cylinder 
function determine the onset of resonance when h N hin) and confirm that it does not 
occur for any value of h when $ & E*. 

For even modes n there is no forcing a t  the side wall and thus the occurrence of 
resonance is replaced by the existence of an eigensolution with arbitrary amplitude 
which satisfies null conditions a t  the walls. When /3 & Ei  no such solutions exist, but 
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this does not indicate that the system is then stable since a full investigation of the 
stability of the system requires consideration of the possibility that instability may 
evolve through oscillatory (rather than steady) convection. A related question is the 
one of nonlinear finite amplitude effects. In  the present study we have restricted 
attention to the behaviour of the steady linear solution forced (through the side-wall 
boundary condition) by the circulation of the basic flow in the annulus. The behaviour 
of this solution suggests that, if the Prandtl number is sufficiently high for overstability 
to be ruled out, a smooth transition may occur to a stable finite amplitude branch in the 
neighbourhood of the first resonance position, -the linear solution becoming unstable 
beyond this point. Even in cases where the linear solution does not resonate there is 
the possibility that nonlinear branches may evolve through bifurcations similar to 
those which occur in the non-rotating B6nard problem discussed by Segel(l969). 
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